
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5575 318

Assuring Confidentiality with Minimum Data

Redundancy in Hybrid Cloud

Mr R. V. Argiddi
1
, Ms Prachi Sontakke

2

Assistant Professor, Computer Science, Walchand Institute of Technology, Solapur, India1

Computer Science, Walchand Institute of Technology, Solapur, India2

Abstract: Cloud computing as the necessity of the ever-increasing volume of data and its storage, comes with the

critical challenge of managing this large amount of data with scalability. A data compression technique called

deduplication is used for eliminating the redundant data by deleting the duplicate copies so as to save the cloud space.

Apart from data compression, we are also applying the security aspects using convergent encryption with some
additional concepts viz., cryptographic tuning and domain separation. Maintaining the authorized access for the user‟s

confidential data, the concept called „Proof of Ownership‟ is used for recognizing the respective user along with his

access privilege.

Keywords: secure deduplication, convergent encryption, cryptographic tuning, domain separation.

I. INTRODUCTION

The ubiquity of the cloud computing has resulted in the

widespread availability of cluster-based services and

applications accessible through the Internet. Examples
include online storage services, big data analytics, and e-

commerce websites. In such a cluster-based cloud

environment, each and every physical machine runs a

multiple virtual machines as instances of a guest operating

system to contain different kind of user applications, and

their data is stored in virtual hard disks which increases

the security issues. Networking of computer tends to use

several advancements in computing technologies like

Distributed computing and Cloud computing. With the

same underlying concept between these two terms, they

even slightly differ from each other.

Pay as u go – Pay-as-u-go is a payment method of cloud

computing that charges based on the usage. This practice

is similar to that of various bills, which use only resources

that are required. Users can select the CPU, memory,

storage, OS, security, networking capacity, access

controls, and any additional software that are required.

Whereas, in distributed systems, the client needs to buy

the particular service or the server for its storage. Broad

Network access – Data over distributed systems can be

accessed and exchanged within a specified range or

location using LAN, MAN, WAN networks. However,
data in cloud is stored across multiple servers all over the

world. And these cloud storage services can be accessed

through web service application programming interface

(API) or co-located cloud computer service. Infrastructure

Maintenance – In cloud, storage maintenance tasks, such

as purchasing additional storage capacity, are handled by

the service provider. Whereas in, distributed systems, it

may affect the whole maintenance of the infrastructure

even if a single server is damaged. Resource sharing –Cost

of the resources, managing it, technical support, and in

case of any resource failure, repairing it; all this has to be

managed by the client itself in the distributed system.

While in cloud, managing of resources and technical

support is given by the cloud service provider (CSP) in the
cloud. As described earlier, costing of any resources is as

per the usage and no additional payment by the client is

required in case of any repair or failure. This is done by

the CSP itself.

A. Definitions

1) User: A non-technical end user who accesses services

through a browser or via some cloud applications.

2) Cloud Service Provider: CSP is an organization that

offers services to the customers of cloud using remote

facility via Internet.

3) Cloud Storage: It is a service model in which data is
maintained, managed and backed up remotely and

made available to the users over the network

B. Deployment Model

Due to the increasing security issues in cloud computing,

we are using strong encryption algorithms along with

public and private key encryption. The following table I

depicts the classification of various cloud deployment

models according to the storage of data and its respective

keys.

Table I: Storage of data and keys in various cloud

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5575 319

The model we are using is Hybrid cloud, with keys in the

private cloud and data in the public cloud. Hence, being

highly secured as the keys are in private cloud and service

to the client at the less cost due to the large volume of data

in a public cloud.

C. Service Model

In this paper, we are using Storage-as-a-Service model of

cloud computing. This service is used by the large

companies for buying the storage space on rent from the

cloud service provider. Many enterprises promote Storage-
as-a-service as a convenient way to manage backups.

These enterprises sign a service level agreement (SLA)

whereby the Storage-as-a-service provider agrees to rent

storage space on a cost-per-gigabyte-stored and cost-per-

data-transfer basis.

II. PRELIMINARIES

A. Security in Cloud

Fig 1. Security in Hybrid Cloud

Security of the data in a network can be achieved using

cryptographic concepts. To protect the data from getting

corrupted or hacked, each file that is being stored should

be encrypted in unreadable format. Encryption comes with

the concept of keys – Public and Private keys. While the
public key accessible to everyone, private keys are very

secured and available only to the corresponding user.

Figure 1 illustrate the most convenient, cost reducing and

secured approach of storing the keys in cloud.

1) Convergent Encryption:

Convergent encryption, also known as Content hash

keying, is a cryptographic system. In the context of cloud

computing, it is used to remove duplicate copies of the

files from storage without the provider having access to

the encryption keys. This encryption system computes the

cryptographic hash value of the original file and then the

encryption is performed on the file by using this particular

obtained hash value as a key. Finally, the hash value itself

s encrypted with the key chosen by the respective user and

stored in the cloud.

B. Data Storage in Cloud

To address the problem of ever increasing volume of data

on cloud and many a times which may store redundant

data copies, as a result of which extra storage space is

wasted; a well-known technique called data deduplication

has attracted and grabbed more attention recently.

1) Data Deduplication:

The basic principle of data deduplication is to store a

single copy of the repetitive data and a pointer to point to

all the duplicate blocks. This can be achieved at File level

or Block level as shown in Fig 2. The old and new data are

compared and if they match, they are marked as duplicate.

Data pointers are updated and the redundant copy is
deleting. Thus, reducing the data storage volumes. Data

deduplication engine gives an index of the digital

signature to the data segment and the signature of a given

repository to identify the data blocks. A pointer is

provided by the index to determine the presence of the

data block. In the copy operation, the data deduplication

software finds the duplicate block of data, and if found, it

inserts a link into the main original data block index

location instead of repeating the data and storing the data

block again. Occurrence of the same block more than once

will cause the generation of more pointers to the indexing
table.

Fig 2. Category of data deduplication strategies

C. Proof of Ownership

It is challenge-response protocol enabling a storage server

to check if a requesting entity is the actual data owner,

based on a some short value. That is, when a user wants to

upload a data file (A) to the cloud, firstly hash value is
computed and then the user sends a hash value hash =

H(A) to the storage server. This latter maintains a database

of hash values of all received files, and looks up hash. If

the match is found, then A is already outsourced to cloud

servers. Then there is no need for the cloud to upload the

file to remote storage servers. If there is no match, then the

user has to send the file data (A) to the cloud.

D. Confidentiality

Confidentiality is a set of rules or a promise that limits

access or places restrictions on certain types of

information.

III. SYSTEM MODEL

A. Architecture for authorized secure deduplication. Fig 3

shows the architecture of our system model which

includes main components such as key request handler and

tag generation, deduplication check, convergent

encryption and decryption. A new deduplication system

obtained for differential duplicate check is proposed under

this hybrid cloud architecture where in the public cloud

resides the S-CSP. The user is only allowed to perform the

duplicate check for files marked with the corresponding

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5575 320

privileges. To support authorized deduplication, the tag of

a file F will be recognized by the file F along with the

privilege. To show the difference with traditional notation

of tag, we call it file token instead.

To achieve authorized access, a secret key KP will be

bounded with a privilege p to generate a file token. Let

∅F,P = TagGen(F, KP) be the token of F which is only

allowed to access by user with privilege p. In another

word, the token∅F,P , can only be computed by the users

with the privilege p.

As a result of this, if a file is been uploaded by a user as a

duplicate token ∅F,P then a duplicate check that is sent

from another user will be delivered successful if and only

if he also has the file F and privilege p. This kind of token

generation function could be quickly implemented as H(F,

KP), where H(.) denotes a cryptographic hash function.

B. Design goals

The problem of privacy preserving deduplication in cloud

computing and propose a new deduplication system

supporting for,

1) Differential Authorization: Each individual who has
been authorized can hold his/her individual token of

his file to perform duplicate check based on his

privileges. Under this assumption, no other user can

generate a token for duplicate check which is out of

his privileges or without the aid from the private

cloud server.

2) Authorized Duplicate Check: Authorized user can use

his/her corresponding private keys to generate query

for specific file and the privileges he/she owned with

the help of private cloud, while the duplicate check is

performed by the public cloud directly and that
informs the user if there is any duplicate.

The security aspects to be considered in this paper lie in

two folds, that includes the file token security and data

files security.

For the file token security, two aspects are defined as

unforgeability and indistinguishability of file token. The

details are given below.

1) Unforgeability of file token/duplicate-check token:

Users with unauthorized access and inappropriate
privileges should be prevented from getting or generating

the file tokens for any duplicate check of any file which

stored at the S-CSP.

The users are not allowed to collude with the public cloud

server so as to break the unforgeability of file tokens. In

our system, the S-CSP is a true provider and curious and

will truly perform the duplicate check on receiving the

duplicate request from the users.

The duplicate check token of users should be issued from

the private cloud server in our scheme.

Fig 3. Architecture

2) Indistinguishability of file token/duplicate-check token:

It requires that any user without querying the private cloud

server for some file token, cannot get any useful

information from the token that includes the file
information or the privilege information.

3) Data Confidentiality:
Users with unauthorized access and inappropriate

privileges or files, including the S-CSP and the private

cloud server, have to be prevented from access to the

underlying original file that is stored at S-CSP. In another

word, the goal of the opponent is to access, retrieve and

recover the files that does not belong to them. In our

system, a higher level of confidentiality is achieved as

compared to the previous definition of data confidentiality

that was based on convergent encryption,.

C. Privacy and deduplication
The prior approaches do not provide any privacy. An

adversary can gain access to the raw associative array and

can gain access to the contents of all the stored files. It is

possible to encrypt all the files before storing them, but if

the same file is encrypted with a different key, the

encrypted files will be different and the deduplication will

fail. This could be solved by encrypting all the files with

the same key, but then everyone with some access would

immediately have full access. We need a solution with

different encryption keys for every file but that still

deduplicates files. This may seem paradoxical, until you
bend the rules slightly to require different encryption keys

for every different file. You can then have equal keys for

equal files. Equal files, equal keys thus equal encrypted

data and problem solved.

D. Convergent Encryption

In convergent encryption, a hash of the unencrypted file is

taken as the encryption key. This is safe because you need

the key to decrypt the file, unless you have already have

the unencrypted file, but then there is nothing left to

secure. First we need some ingredients. Take the

cryptographic primitives

HA: {0,1}∗ → {0,1}lA

HB: {0,1}∗ → {0,1}lB

E: {0,1}lK X {0,1}∗ → {0,1}∗
D: {0,1}lK X {0,1}∗ → {0,1}∗

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5575 321

where HA and HB are cryptographic hash functions of

length lA and lB respectively and E and D are symmetric

encryption and decryption functions with key length lK.

This implies that HA(X1) =HA(X2) ⇔ X1=X2

HB(X2) =HB(X2) ⇔ X1=X2

D(K1,E(K2,X)) =X ⇔ K1 =K2

Where the implications in the leftward direction are exact
but in the rightward implications are only with

cryptographic confidence. This will be important later in

the security analysis. For permanent storage, we will use

an associative array with interface

Store: {0,1}lB × {0,1}∗ → ∅

Retrieve: {0,1}lB → {0,1}∗

The convergent encryption store will have the interface

Put: {0,1}∗ → {0,1}lB × {0,1}lA

Get: {0,1}lB × {0,1}lA → {0,1}∗

The Put operation takes a piece of information and stores

it encrypted in the associative array. It is implemented as

Put(X) ≕(H,K)

K = HA(X)

X′= E(K,X)

H = HB(X′)

Store(H,X′)

The Get operation is simply the inverse operation

Get(H,K) ≕X
X′= Retrieve(H)

X = D(K,X′)

The Get operation can optionally verify the integrity of the
data by checking K=HA(X) and/or H=HA(X′). The later

has an advantage we will show below.

The implementation given above requires three passes

through the data. The passes have data dependencies so
they cannot be parallelized. It is possible to develop a two-

pass system. The hash H of the output stream X′ can be

calculated while the output stream is being produced. This

is similar to authenticated encryption but differs in the use

of a hash instead of a message authentication code. But it

is not possible to construct a one-pass system that

deduplicates and has at least the security of convergent

encryption. In a one-pass system, the first couple of bytes

cannot rely on all the remaining bytes. But this is

necessary to have a key with the entropy of the entire file.

But this method is vulnerable to brute force attack. This
can be solved by two methods:

1) Domain Separation

2) Cryptographic tuning

IV. CONTRIBUTION

A. Domain Separation

Suppose we make HA a keyed hash function with a key

KA. This will thwart attacks relying on knowledge of HA,

unless the attacker knows the key. This includes all major

the attacks mentioned above. The downside is that it also

restricts deduplication to data encrypted with the same KA.

The different KA effectively create different domains.

Within such a domain, deduplication happens. But anyone

within the domain can also confirm that certain files are

stored, or even use the learn the remaining attack to find

which of a small set of possible files is stored. From

outside the domain, all the encryption keys K depend on

the domain key KA. The domains are thus at least as secure

as when they were encrypted using just the domain key.

Where the domain boundaries should be, or when to use

different KA's will be an important design decision. Larger

domains will result in more deduplication and a more

efficient system, but it will also leak some knowledge

about what is stored in the system to a larger group.

B. Cryptographic Tuning

For the system to function properly it relies on:
HB needs pre-image resistance to prevent an attacker from

manipulating data undetectably. Collision resistance

would be required if the implementation cannot handle

hash collisions. HA needs to be a good randomness

extractor. Its role is to extract sufficient entropy from the

plaintext to create a key. A hash that maps the plaintext

distribution uniformly to the set of encryption keys will

satisfy this.

V. CONCLUSION

The notion of authorized data deduplication was proposed
for protecting the data security by using differential

privileges of users in the duplicate check. We also

presented new deduplication constructions supporting

authorized duplicate check in hybrid cloud architecture, in

which the the private cloud server generates the duplicate-

check tokens of files with private keys. We used

convergent encryption with modification version to deal

with brute force attack using Domain Separation and

Cryptographic tuning to make better authorized

deduplication technique.

REFERENCES

[1]. K. Jin and E. Miller, "The effectiveness of deduplication on virtual

machine disk images" In Proc. SYSTOR 2009: The Israeli

Experimental Systems Conference.

[2]. Q. He, Z. Li, and X. Zhang, “Data deduplication techniques,” in

International Conference on Future Information Technology and

Management Engineering, 2010, pp. 431–432.

[3]. Z. Li, X. Zhang, and Q. He, “Analysis of the key technology on

cloud storage,” in International Conference on Future Information

Technology and Management Engineering, 2010, pp. 427–428.

[4]. J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M.

Theimer. Reclaiming space from duplicate files in a serverless

distributed file system. In ICDCS, pages 617–624, 2002.

[5]. M. W. Storer, K. M. Greenan, D. D. E. Long, and E. L. Miller.

Secure data deduplication. In StorageSS, pages 1-10, 2008.

[6]. D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in

cloud services: Deduplication in cloud storage. IEEE Security &

Privacy, 8(6), 2010.

[7]. J. Yuan and S. Yu. Secure and constant cost public cloud storage

auditing with deduplication. IACR Cryptology ePrint Archive,

2013:149, 2013.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5575 322

[8]. B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottolneck in

the data domain deduplication file system,” in 6th USENIX

Conference on File and Storage Technologies (FAST ‟08), 2008,

pp. 269–271.

[9]. Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay

Deolalikar, Greg Trezise, and Peter Camble. Sparse indexing: Large

scale, inline deduplication using sampling and locality. In

Proceedings of the 7th USENIX Conference on File and Storage

Technologies (FAST). USENIX, 2009.

[10]. J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl. A secure data

deduplication scheme for cloud storage. In Technical Report, 2013

[11]. J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer.

"Reclaiming space from duplicate files in a serverless distributed

file system." In ICDCS, pages 617–624, 2002.

[12]. Google App Engine [Online]. Available:

http://code.google.com/appengine/

[13]. P. Mell and T. Grance, “The nist definition of cloud computing

(draft),” NIST special publication, vol. 800, no. 145, p. 7, 2011

[14]. S. Quinlan and S. Dorward. Venti: a new approach to archival

storage. In Proc. USENIX FAST, Jan 2002.

[15]. M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-

lockedencryption and secure deduplication. In EUROCRYPT,

pages 296– 312, 2013.

[16]. D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th

NIST-NCSC National Computer Security Conf., 1992.

[17]. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.Role-

based access control models. IEEE Computer, 29:38–47, Feb 1996.

[18]. P. Anderson and L. Zhang. Fast and secure laptop backups with

encrypted de-duplication. In Proc. of USENIX LISA, 2010.

[19]. A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, and J. C. S. Lui.

A secure cloud backup system with assured deletion and version

control. In 3rd International Workshop on Security in Cloud

Computing, 2011.

[20]. M. W. Storer, K. Greenan, D. D. E. Long, and E. L. Miller. Secure

data deduplication. In Proc. of StorageSS, 2008.

